polygon_description=\u00c7iz{poligon} <b>{noktaelemanlar\u0131}</b>. <b>{BU}</b> ile isimlendirilir ve bu do\u011fru par\u00e7alar\u0131 ile s\u0131n\u0131rl\u0131d\u0131r:
point_description=x-de\u011feri <b>{x}</b> ve y-de\u011feri <b>{y}</b> olan<b>{BU}</b> noktay\u0131 \u00e7iz..
point_element_name=Nokta
point_short=Ba\u011f\u0131ms\u0131z nokta
parametercurve_element_name=Parametrik E\u011fri
parametercurve_short=x = {sx} ve y = {sy} t {min}'dan {max}'a ba\u011fl\u0131d\u0131r.
line_short_c={A}(ba\u015flang\u0131\u00e7) ve {B} ile tan\u0131ml\u0131.
line_short_d={A} ve {B} yi birle\u015ftir.
parametercurve_auto_name=P
parametercurve_description=x = <b>{sx}</b> ve y = <b>{sy}</b> olan<b>{BU}</b> e\u011friyi \u00e7iz. <b>t</b> parametrik da\u011f\u0131l\u0131m\u0131 <b>{min}</b> 'dan <b>{max}</b> ya kadard\u0131r.
line_short_b={B}(ba\u015flang\u0131\u00e7) ve {A} ile tan\u0131ml\u0131.
graph_description= y = <b>{sy}</b>fonksiyonunun <b>{BU}</b> grafi\u011fini \u00e7iz.
composition_short=Birle\u015ftirilmi\u015f nesne
composition_sector_short={Girdi Eleman\u0131#0}(orta nokta), {Girdi Eleman\u0131#1} and {Girdi Eleman\u0131#2} ile tan\u0131ml\u0131 daire par\u00e7as\u0131
composition_arrow_parallel_short={Girdi Eleman\u0131#0}(ba\u015flang\u0131\u00e7) ve biti\u015f {Girdi Eleman\u0131#1} ile tan\u0131ml\u0131 paralel ok
composition_parallel_short={Girdi Eleman\u0131#0}, {Girdi Eleman\u0131#1} ile tan\u0131ml\u0131 paralel do\u011fru
composition_circumcircle_short={Girdi Eleman\u0131#0}, {Girdi Eleman\u0131#1} and {Girdi Eleman\u0131#2} ile tan\u0131ml\u0131 \u00e7evrel \u00e7ember
composition_normal_short={Girdi Eleman\u0131#0}, {Girdi Eleman\u0131#1} ile tan\u0131ml\u0131 dik do\u011fru
composition_perpendicular_short={Girdi Eleman\u0131#0}, {Girdi Eleman\u0131#1} ile tan\u0131ml\u0131 dik eksen
composition_bisector_short={Girdi Eleman\u0131#0}, {Girdi Eleman\u0131#1} and {Girdi Eleman\u0131#2} ile tan\u0131ml\u0131 ortalayan
composition_parallelogram_point_short={Girdi Eleman\u0131#0}, {Girdi Eleman\u0131#1} and {Girdi Eleman\u0131#2} ile tan\u0131ml\u0131 paralelkenar noktas\u0131
composition_mirror_point_short={Girdi Eleman\u0131#1} (merkez) ve {Girdi Eleman\u0131#0} ile tan\u0131ml\u0131 simetri noktas\u0131
composition_circumcircle_center_short={Girdi Eleman\u0131#0}, {Girdi Eleman\u0131#1} and {Girdi Eleman\u0131#2}ile tan\u0131ml\u0131 \u00e7evrel \u00e7ember merkezi
composition_mirror_line_short={Girdi Eleman\u0131#1} (axis) ve {Girdi Eleman\u0131#0} ile tan\u0131ml\u0131 simetri noktas\u0131
composition_perpendicular_point_short={Girdi Eleman\u0131#0} ve {Girdi Eleman\u0131#1} ile tan\u0131ml\u0131 dik do\u011frunun aya\u011f\u0131
composition_midpoint_short_b= {Girdi Eleman\u0131#0}ile tan\u0131ml\u0131 orta nokta
composition_midpoint_short_a= {Girdi Eleman\u0131#0} ve {Girdi Eleman\u0131#0} ile tan\u0131ml\u0131 orta nokta
composition_sector_description=Merkezi <b>{Girdi Eleman\u0131#0}</b> ve merkez a\u00e7\u0131s\u0131<b>{I-Girdi Eleman\u0131#1}{Girdi Eleman\u0131#0}{Girdi Eleman\u0131#2}</b> olan <b>{\u00c7\u0131kt\u0131 Eleman\u0131#0}</b> yayl\u0131 daire par\u00e7as\u0131n\u0131 \u00e7iz.Yay <b>{OutputElement#1}</b>noktas\u0131nda biter,a\u00e7\u0131n\u0131n kollar\u0131 <b>{OutputElement#2}</b> ve <b>{OutputElement#3}</b>ile isimlendirilir.
composition_arrow_parallel_description=<b>{Girdi Eleman\u0131#1}</b> okuna paralel olan <b>{\u00c7\u0131kt\u0131 Eleman\u0131#0}</b> oku \u00e7iz.<b>{Girdi Eleman\u0131#0}</b> verilen ba\u015flang\u0131\u00e7 noktas\u0131d\u0131r ve <b>{\u00c7\u0131kt\u0131 Eleman\u0131#1}</b> olu\u015fturulan biti\u015f noktas\u0131d\u0131r.
composition_circumcircle_description= <b>{Girdi Eleman\u0131#0}</b>, <b>{Girdi Eleman\u0131#1}</b> ve <b>{GirdiEleman\u0131#2}</b>noktalar\u0131ndan ge\u00e7en <b>{\u00c7\u0131kt\u0131 Eleman\u0131#1}</b> \u00e7emberi \u00e7iz . <b>{\u00c7\u0131kt\u0131 Eleman\u0131#0}</b> \u00e7emberin merkezidir.
composition_parallel_description= <b>{Girdi Eleman\u0131#0}</b> noktas\u0131ndan ge\u00e7en<b>{Girdi Eleman\u0131#1}</b> 'a paralel olan <b>{\u00c7\u0131kt\u0131 Eleman\u0131#0}</b> do\u011frusunu \u00e7iz .
composition_normal_description= <b>{Girdi Eleman\u0131#0}</b> noktas\u0131ndan ge\u00e7en <b>{Girdi Eleman\u0131#1}</b> noktas\u0131na normal olan <b>{\u00c7\u0131kt\u0131 Eleman\u0131#0}</b> do\u011fruyu \u00e7iz .
composition_perpendicular_description= <b>{Girdi Eleman\u0131#0}</b> noktas\u0131ndan <b>{Girdi Eleman\u0131#1}</b>noktas\u0131na <b>{\u00c7\u0131kt\u0131 Eleman\u0131#1}</b> dik olan do\u011fruyu \u00e7iz. <b>{\u00c7\u0131kt\u0131 Eleman\u0131#0}</b> ile adland\u0131r\u0131l\u0131r.
circle_short_d={M} (merkez)ve {P} ile tan\u0131ml\u0131
circle_short_c={M} (merkez)ve {yar\u0131\u00e7ap} yar\u0131\u00e7ap ile tan\u0131ml\u0131
circle_short_b={M} (merkez)ve {C}'nin yar\u0131\u00e7ap\u0131 ile tan\u0131ml\u0131
circle_short_a={M} (merkez)ve {L} ( yar\u0131\u00e7ap) ile tan\u0131ml\u0131
circle_element_name=\u00c7ember
circle_description_d=Merkezi<b>{M}</b> ve \u00fczerindeki bir noktas\u0131 <b>{P}</b> olan <b>{BU}</b> \u00e7emberi \u00e7iz
circle_description_c=Merkezi<b>{M}</b> ve yar\u0131\u00e7ap\u0131<b>{yar\u0131\u00e7ap}</b> olan <b>{BU}</b> \u00e7emberi \u00e7iz
circle_description_b=Merkezi<b>{M}</b> ve yar\u0131\u00e7ap\u0131<b>{C}</b>\u00e7emberinin yar\u0131\u00e7ap\u0131 olan <b>{BU}</b> \u00e7emberi \u00e7iz
circle_description_a=Merkezi<b>{M}</b> ve verilen yar\u0131\u00e7ap\u0131<b>{L}</b>olan <b>{BU}</b> \u00e7emberi \u00e7iz
circle_auto_name=c
caspoint_short=x={sx} ve y={sy} ile tan\u0131ml\u0131
caspoint_element_name=(x;y)- Nokta
caspoint_description=x koordinat\u0131=<b>{sx}</b> ve y koordinat\u0131=<b>{sy}</b> olan (x;y) noktas\u0131n\u0131 g\u00f6ster.
arrow_short={A}(ba\u015flang\u0131\u00e7) ve {B} (biti\u015f)
arrow_element_name=Ok
arrow_description=Ba\u015flang\u0131\u00e7 noktas\u0131 <b>{A}</b> ve biti\u015f noktas\u0131 <b>{B}</b> olan <b>{Bu} </b> oku \u00e7iz
arc_short={M} (merkez)ile tan\u0131ml\u0131,{P} ve {[A}
arc_element_name=Yay (\u00c7ember)
arc_description=<b>{M}</b> noktas\u0131 etraf\u0131nda ba\u015flang\u0131\u00e7 noktas\u0131 <b>{P}</b> olan <b>{Bu}</b> yay\u0131 \u00e7iz.
arc_auto_name=Yay
angle_short={A},{S} (k\u00f6\u015fe) ve {B} ile tan\u0131mlan\u0131r.